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This work treats many-body aspects in an idealized class of reversible binding problems involving
a static binding site with many diffusing point particles. In the noncompetitive limit, where no
restriction exists on the number of simultaneously bound particles, the problem reduces to reversible
aggregation. In the competitive limit, where only one particle may be simultaneously bound, it
becomes a model for a pseudounimolecular reaction. The general formalism for both binding limits
involves the exact microscopic hierarchy of diffusion equations for the N-body density functions.
In the noncompetitive limit of independent particles, the hierarchy admits an analytical solution
which may be viewed as a generalization of the Smoluchowski aggregation theory to the (idealized)
reversible case. In the competitive limit, the hierarchy enables straightforward derivation of useful
identities, determination of the ultimate equilibrium solution, and justification for several approxi-
mations. In particular, the utility of a density-expansion, short-time approximation is investigated.
The approximation relies on the ability to solve the hierarchy numerically for a small number of
particles. This direct-propagation algorithm is described in the numerical section.

PACS number(s): 05.40.+j, 82.20.Fd, 87.10.+€, 87.15.Rn

I. INTRODUCTION

The present work treats idealized many-body, re-
versible binding processes in condensed media. One as-
sumes that noninteracting, point particles diffuse in a
medium containing a static, spherical binding site. If
only one particle may be bound at a given time the bind-
ing is termed “competitive” whereas if the site admits
any number of particles the binding is “noncompetitive.”
Given an initial (out of equilibrium) distribution, one
monitors the probability that one or more particles are
bound at any later time. It is noted that competitive
and noncompetitive binding are two extreme cases of a
binding site which is limited to the binding of k£ particles
at most. The general process may be termed binding of
order k. Most physically significant are the cases k = oo
(noncompetitive) and k = 1 (competitive binding), to be
discussed below.

Noncompetitive binding is an idealized aggregation
process. Aggregation was first considered by Smolu-
chowski [1] and reviewed by Chandrasekhar [2]. In this
approach, irreversible aggregation of different size clus-
ters is described by a set of rate equations with rate
parameters obtained from steady-state diffusion theory.
These depend on the radius and diffusion coefficient of
the aggregates, which are functions of their size. The
rate-equation approach has been extended to various
cases [3] including reversible aggregation, which appears
to be important for phospholipid vesicles [4, 5]. Recently,
interest has shifted to the geometry of the clusters and
their fractal nature [6]. With the exception of Ref. [7],
mainly irreversible aggregation has been considered. In
the present model, clusters have no geometry since they
are comprised of point particles. Thus one has an ideal
case where the only observable is the number of particles
within an aggregate (the aggregate size). Additionally,
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for a static binding site cluster-cluster aggregation can-
not occur. These limitations allow rigorous determina-
tion of the aggregate size distribution in the reversible
case.

The Smoluchowski model was shown to be an exact
description of the microscopic many-body dynamics in
two limiting cases. The first is irreversible aggregation
of point clusters on the line, provided that clusters of all
sizes have the same diffusion coefficient [8]. This poly-
merization process includes both single-species annihila-
tion and coalescence as special cases. For the latter, the
exact interparticle distance distribution can also be ob-
tained [9]. The other limiting problem is fluorescence
quenching of a static excited molecule by moving point
quenchers [10, 11]. This solution can be extended to a
moving molecule by a density expansion [12]. Since the
excited molecule is quenched irreversibly upon the arrival
of the first quencher, the quenching process is isomor-
phic to irreversible binding of the first monomer in the
noncompetitive binding model. It is therefore not totally
surprising that an analytical solution can be obtained for
all the aggregation states also in the reversible case.

Competitive binding represents a pseudounimolecular
reaction in solution under conditions that one of the re-
actants is in large excess. This is a special case of a bi-
molecular reaction, the study of which was pioneered by
Waite [13], Noyes [14], and others. Recent investigations
of irreversible bimolecular reactions have focused on the
effect of fluctuations in the initial particle distribution on
the asymptotics of the reaction [15-19]. In reversible re-
actions initial fluctuations are not likely to be important
because each dissociation event regenerates the free site
with a distribution of particles around it which eventually
becomes unrelated to the initial distribution.

Recently, attention has been directed to reversible
diffusion-influenced reactions [20-35]. Among various
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approaches used are convolution relations [22, 24, 25,
27], a “bimolecular” boundary condition [29, 30], mean-
field approaches [21, 31-33], occupation number for-
malism [31], and statistical-mechanical approaches [35].
These approaches usually do not specify the microscopic
diffusion equations that form the starting point of the
derivation. An exception is the occupation-number for-
malism of Szabo and Zwanzig [31], which should be ob-
tainable from the exact hierarchy of diffusion equations
presented below. When truncated after a single binding
event the hierarchy describes competitive binding, while
if not truncated it represents noncompetitive binding.

Several experimentally important situations fall under
the title of competitive binding. Examples are substrates
competing for binding to the active site of an enzyme or
protons competing for binding to a bulky base molecule.
In both cases a large molecule (enzyme, base) serves as
the binding site and may therefore be considered static.
We [36-38] have reported reversible geminate recombi-
nation of protons following the photodissociation of an
excited hydroxyaryl molecule (ROH acid). The fluores-
cence intensity of the excited undissociated acid quanti-
tatively fits the solution of the time-dependent Smolu-
chowski equation for a Coulomb field and with the back-
reaction [39,40] boundary condition imposed at the con-
tact separation. A characteristic power-law (t=3/2) de-
cay is clearly observed [37,38(a)]. By lowering the pH, a
competitive many-body environment is obtained where
the homogeneous protons compete with the geminate
proton for rebinding. Under such conditions we have
found [41] that the binding probability follows a power-
law approach to equilibrium. Unlike the prediction of
some mean-field approximations [29, 31, 32] the asymp-
totic power seems to increase with increasing proton con-
centration. The origin of this discrepancy is currently
unclear. Asymptotic analysis of the equations presented
below (to be carried out separately) could shed some light
on this problem.

This paper is structured as follows: Sec. II defines the
quantities under investigation; Sec. III presents the gen-
eral many-body binding equations; Sec. IV gives their
solution in the limit of noncompetitive binding, where
all the particles are mutually independent; Sec. V de-
rives identities and approximations for competitive bind-
ing. Finally, Sec. VI discusses the direct propagation
algorithm used to solve these equations numerically for

a small number of particles.
J

R R
gn,1(t) = / / v (¥, T2,...,zN,t) AV dVN + -+ + pN(Z1,.. ., TN—1,%,8) dVT - dVN_1].
a a
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II. DEFINITION OF THE BINDING
PROBABILITIES

Let us consider N identical, noninteracting particles
diffusing in a d-dimensional viscous medium with a re-
versible trap of radius a located at the origin. The intro-
duction of an interaction between the particles will com-
plicate the following equations considerably and is there-
fore not considered here. Correlations between particles
are only introduced at the surface of the trap and then
only for competitive binding. Otherwise the particles
move freely and randomly with a diffusion constant D.
The N-particle, time- (¢) dependent probability density
function will be denoted by px (z1, z2, ..., TN, t), where x;
is the distance of the ith particle from the origin. z; may
assume any value between a and R (which can possibly
be infinite). In addition, the N spatial coordinates may
each assume one discrete value representing a bound par-
ticle and denoted by an asterisk. For example, the vector
(*, 2, ...,z ) implies that particle 1 is bound while the
others are free to diffuse. This differs from the situa-
tion described by the vector (a, z2, ...,ZN), where parti-
cle 1 has reached the trap surface but is yet unbound.
Trapping and detrapping may occur at r = a with the
association and dissociation rate coefficients k, and g,
respectively. The following exposition concentrates pri-
marily on the binding states of the site. These are de-
scribed mathematically by the time-dependent probabil-
ity for having m out of the N particles simultaneously
bound, to be denoted by gnm(t). Thus 0 < m < N.

The binding-state probabilities are defined as follows:
The probability of having no particle bound, sometimes
called the survival probability and denoted by Sy (t), is
given by

ano(t) = Sn(t)

Il

R R
// pN(Z1,...,zN,t)dV] - dVp,
a a
(2.1)

where dV; = 4 xf’lda:i is a volume element, v4 =
2m%/2/T'(d/2) is the appropriate geometric factor,
namely, 2, 2w, and 4w for d =1, 2, and 3, respectively
(in one dimension, y4 = 1 if only half the line is con-
sidered). The probability of having exactly one particle
bound is the sum over all single binding configurations

(2.2a)

When all N particles start from the same initial condition, for example when all are initially bound or initially
randomly distributed, the N terms in (2.2a) become identical so that

R R
gan1(t) = N/ / PN(*,Z2,...,ZN,t)dVa - dVN
a a

(2.2b)

In a similar fashion one defines gn,m(t) for 1 < m < N. For equivalent particles

N R R
an,m(t) = (m)/ / DN(*ye ooy %, Tt 1y -« -, TN, E) Vi1 - - dVpN .

(2.3)
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The binomial factor,

(Z) =N(N =1)--+ (N —=m+1)/ml,

represents all the permutations leading to m bound parti-
cles. The above probabilities normalize initially to unity

N
> avm(0) = 1.
m=0

The equations introduced below will have the property
that they conserve probability, so the normalization con-
dition will be shown to hold for ¢t > 0 as well. For compet-
itive binding, only gn,0 and gn,1 differ from zero, whereas
in the noncompetitive case all of the binding states are
permissible.

(2.4)

III. THE MICROSCOPIC BINDING EQUATIONS

The N-particle density distribution obeys an N-
dimensional diffusion equation with appropriate bound-
ary conditions. The terms appearing in the boundary
conditions themselves obey certain diffusion equations.
In order to deduce these equations, consider first the
one-particle equation which is to be generalized to 2 and
subsequently to N particles.

A. The single-particle equations

The one-particle equation is frequently used to treat
the reversible geminate recombination problem [36-38]

w = Lpi(z,t), a<z<R, (3.1)
where the diffusion operator is defined by
7] 0 17}
= 1-a 9 pd-19 _ __-1.1-d0
L=z 8£Dm E v T 8:1:‘7' (3.2)

Here J = —v42% 1 D3/0z is the diffusive-flux operator.
Equation (3.1) is augmented by boundary conditions. At
z = R the boundary is reflective,

jpl(a’" t)lx:R = Ov

so that particles cannot leak through the outer sphere.
At the “contact separation” a, a backreaction (reversible)
boundary condition [39, 40, 37] is imposed

(3.3)

jpl(wv t)|m=a, = K’dpl(*7t) - K'apl(a: t) . (34)

As compared with other notations in the literature [36],
ke = 7Yaa% lk,. Equation (3.4) states that the flux
into the binding site is the difference between an asso-
ciation (trapping) term and a dissociation (detrapping)
term. When no dissociation occurs, k4 = 0 and the back-
reaction boundary condition reduces to the “radiation”
boundary condition which depicts irreversible associa-
tion. When, in addition, x, — oo the radiation bound-
ary condition reduces to the absorbing (Smoluchowski)
boundary condition, p;(a,t) = 0.

To complete the single-particle equations, one needs to
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consider the bound fraction, pi(*,t). It obeys a simple
kinetic equation

dp1(*,t)

dt = ﬂapl(aw t) — Kd pl(*!t) ’ (3'5)

containing no diffusive terms. One expects that the to-
tal probability of finding the particle somewhere (either
bound or unbound) normalizes to unity, therefore

p1(*,t) = 1—51(¢).

This identity follows by integrating (3.1) over space, sub-
stituting (3.3)-(3.5) to obtain

(3.6)

R
_ _dpl(*vt)
= =2, 3.7)

and integrating over time. In the literature [36, 24],
1—.51(¢) is often used for p; (*,t). In the notations intro-
duced in Sec. II, g1,0(t) = S1(t) while g1,1(t) = p1(*,1).
Therefore g1,0(t) + g1,1(t) = 1, in agreement with (2.4).

It is possible to join the backreaction boundary condi-
tion (3.4) with the diffusion equation (3.1) into a single
relation

Op1(z,t
D) — Lpy(a,) + [kapa(s)
—kap1(a,t)] 8(z — a)/(vaa®™?),
(3.8)
which is subject to reflective boundary conditions
jpl(xat)|a;=a = ,,7[)1(.’1',t)|$=R =0, (39)

at both ends. Indeed, when z > a (3.8) reduces to (3.1).
To show that it leads also to the backreaction boundary
condition (3.4), one integrates it from a to a + € and
takes the limit € — 0. The left-hand side (lhs) is of order
€. The right-hand side (rhs) gives —Tp1(z,t)|,—qrc +
kap1(*,t) — Kep1(a,t). This is because the flux at z = a
now vanishes. In the limit, (3.4) is recovered. This is a
generalization of the Wilemski-Fixman derivation [42] to
a reversible reaction.

It is interesting to note that (3.8) can be formally ex-
tended to cover also (3.5). To do so, assume that  may
also assume the value *. Since p;(*,t) is  independent,
the diffusion term on the rhs of (3.8) vanishes. By for-
mally defining

8z —a)/(vaa® ey = -1, (3.10)
one obtains (3.5) as a special case of (3.8) when x = *.
Therefore all the one-particle equations, (3.1) through
(3.5), are summarized in the single equation (3.8).

B. Two-particle equations

The generalization of the above equations to two par-
ticles is almost straightforward. The two-particle density
function obeys
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2 t density function decreases by unity.
Op2 (1,22, ¢ van M Y iy
( 3; L z Lip2(z1,22,t), a<z <R, The above equations are also subject to boundary con-
i=1

(3.11)

where £; is a diffusion operator in the coordinate z;. The
boundary conditions are

Jip2(z1,T2,t)|,,p =0, i=1,2 (3.12)

at the outer sphere and

jl pQ(th?at)lxl:a = K’dp2(*’ 22, t) - K'ap2(a’ ant)a
(3.13a)
T2 p2(21, 22, 1)1, = KaP2(T1, %,t) — Ko P2(T1,0,1)

(3.13b)

for describing reversible binding at the inner sphere. In
the above boundary conditions, 7; is the flux operator in
;.
The only nontrivial extension of the one-particle equa-
tions occurs upon generalization of (3.5). Unlike p; (*,t),
which can vary only due to association or dissociation,
both pa(x, z2,t) and pa2(z1, *,t) vary also due to diffusion
of the unbound particle. Hence one has

Opa (%, T2, t

% = ;Cng(*,.’l?z,t) +ﬁaP2(a,$2,t)
—Kap2(*, T2,t), (3.14a)

1o} t

p2(:léllta*, ) = £1p2(z1’*7t) +f€ap2($1,a,t)

—dez(.’l,‘l,*,t) . (3.14b)

When one particle is bound the appropriate density func-
tions become one dimensional as compared with the two-
dimensional density for two unbound particles. For each
additional bound particle the dimensionality of the rele-

|

ap2($17 Z2, t)

ditions. The outer boundary condition is again reflective,
while those at z; = a depend on whether the binding
process is competitive or not. For the noncompetitive
process, binding of the second particle is analogous to
that of the first. Therefore

\72P2(*y$2,t)|z2=a = K/dp2(*a *at) - K/ap2(*aa7 t) )
(3.15a)

Jl p2($1a *vt)l;m:a = K‘dp2(*y *7t) - Hap2(a7 *,t) .
(3.15b)

When binding is competitive, only a single particle may
bind at a time. In this case, pa(*,*,t) = 0 and K, = 0
whenever the trap is occupied. The boundary conditions
reduce to

J2p2(*vm27t)lx2=a = leZ(xh*yt”zl:a =0.
' (3.16)

For competitive binding, the hierarchy of equations ends
at this level. In noncompetitive binding, one needs to
consider also the equation obeyed by pa(*,*,t). This
zero-dimensional density is the probability of the single
event that both particles are simultaneously bound. It
therefore obeys a simple kinetic equation, containing no
diffusional terms

dp2(*, *, t)

_T = Kq [p2(*, a, t) +P2(a, *,t)] - 25dp2(*5 *7t) :

(3.17)

This accounts for the possible binding of each of the two
particles.

As in the single-particle case, the diffusion equation
and backreaction boundary condition may be joined to-
gether to give

2
5t =" Lipa(x1,72,t) + [Kap2(x,2,t) — Ka p2(a, T2,t)] 6(z1 — a)/(yaa?™?)

i=1

+ [kap2(z1,*,t) — Ka p2(21,0,t)] 8(z2 — @) /(vaa®™ 1),

which is subject to reflective boundary conditions at both
ends

Tip2(x1,22,t) |5, = Tip2(T1,22,t)|,,_p =0. (3.19)

The proof follows that of (3.8). It is amusing to note that
by allowing the states z; = * and adopting the convention
in (3.10), the single relation (3.18) replaces all of (3.11)
through (3.17).

The above equations can be presented graphically by
the kinetic scheme of Fig. 1. Here two particles are as-
sumed to diffuse on a finite interval discretized as the five
uniformly spaced grid points (full circles). A point (i, )
on the two-dimensional lattice represents particle 1 on
site ¢ and particle 2 on site j. The transition probabilities

(3.18)

(per unit time) between the lattice sites (full arrows) are
all equal to D/(Axz)?, where Az is the grid spacing. The
sites marked by asterisks represent one particle bound,
and the second free to diffuse. They are connected among
themselves by the same transition probabilities of mag-
nitude D/(Azx)?, while the transition probabilities to or
from the regular sites (circles) are proportional to the
dissociation and recombination rate coefficients (dashed
arrows). The whole difference between competitive and
noncompetitive binding is that in the first case the origin
(0,0) has to be excluded since it represents two-particle
binding. The scheme in Fig. 1 represents, in fact, the
Master operator used in a numerical solution of the spa-
tially discretized diffusion equations (see Sec. VI).
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FIG. 1. Discrete spatial grid and transition probabilities
for one-dimensional competitive binding of two particles.

C. Consistency checks

The consistency of the hierarchy presented above can
be checked by considering first the density integrated over
one of the coordinates and subsequently over both coor-
dinates. One expects these quantities to obey physically
sensible equations. Such relations are obtained below.

Define a density which is integrated over one coordi-
nate by

R
ﬁz(xl,t) E/ pz(l‘l,:rz,t)dVQ. (3.20)
a

Integration of (3.11) over z and insertion of (3.13b) gives

Opa(zx1,t _
—22—5%1—) = L1 P2(z1,t) + kap2(z1, %)
—Kq p2(z1,0,t) . (3.21)
Adding this to (3.14b) gives
o[p 1t + 3 7t _
[P2(@1 )6tp2($1 L)) L[p2(z1,t) + p2(z1, %, 1)),
' (3.22)

which is a single-particle diffusion equation, see (3.1).
Since the sum p2(z1,t) + p2(Z1, *, t) represents the total

probability of finding particle 1 at x1, irrespective of par-

ticle 2, it is indeed expected to obey a simple diffusion
equation in the coordinate z;.

The form of the backreaction boundary condition im-
posed on (3.22) depends on whether the process is com-
petitive or not. By integrating (3.13a) over x2 and adding
either (3.15b) or (3.16) one gets

\71 [}32(-’1;17 t) + pZ(zlv *, t)”z:1=a

= Kd [52(*» t) + p2(*v *, t)] — Ka [732(‘2’ t) + pz(a, *, t)]
(3.23a)
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for the noncompetitive case, but
jlw2(m1’t) +P2(1717 *yt)]|m1=a = K’dﬁ2(*1t) - K’aﬁ2(a7 t)
(3.23b)

for competitive binding. Thus po(x,t) + p2(z,*,t) =
p1(z,t) for noncompetitive binding (see below), but not
for competitive binding. Similar results hold in z.

By further integrating the above equations and substi-
tuting sequentially, it can be verified that

R
Sp(t) =1 —/ pa(z1, %, ) AV
a

R
_/ p2(*,$2,t) d‘/Z _pQ(*y*vt)
a
=1-¢g2,1(t) — q2,2(t)

in the noncompetitive case, and

(3.24a)

R R
Sa(t) =1 ——/ p2(z1,*,t) dV1 —/ D2(*, 2, t) dVa
a a
—1-gaa(®) (3.24D)

in the competitive case. Unlike the one-particle case,
where no distinction between the two binding processes
exists, (3.6) generalizes in different ways for competitive
and noncompetitive binding. To obtain the above results
use was made of (2.4). Thus by assuming initial normal-
ization, the binding probabilities are properly normalized
at all subsequent times. This verifies that the hierarchy
of diffusion equations indeed conserves probability as it
should.

D. Many-particle equations

The many-particle equations may be obtained from the
two-particle equations by induction. For completeness,
they are summarized below. The zeroth level of the hi-
erarchy is the N-particle diffusion equation

OpNn(T1,...,ZN,t) N r :
It = g ipN(-Tl’---afL'Ny )a

a<z; <R (3.25)

which is subject to outer and inner boundary conditions.
The outer boundary conditions are reflective

Tipn(@1, - &N, t)|yeg =0, i=1,...,N  (3.26)

while the inner boundary conditions depict backreaction
in each and every coordinate. In z; one has

leN(xla s 7mN7t)|zl=a

= Ka PN (*,T2,...,ZN,t) — Ka PN (@, T2, .- ,IN,t)
(3.27)

and similarly in zs, ..., zx. The density function for par-
ticle 1 bound obeys a diffusion equation in the remaining
coordinates. For any value of x3,...,zN it may increase
or decrease due to association or dissociation of particle
1. Therefore
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Opn (*,Z2,. ..
ot

1=2

Again, analogous equations hold in all other coordinates.
The term involving py(a,22,...,ZN,t) couples the ze-
roth and first levels of the hierarchy. One reason for
checking the consistency of the two-particle equations
was to establish (3.28) as the first level of the hierarchy:
Further levels then follow by induction. On this level
there are again outer and inner boundary conditions. The
outer boundary conditions are, of course, reflective

i=2,...,N.
(3.29)

%pN(*,xg, .. ‘vaat)|z,-=R =0,

For competitive binding, the inner boundary conditions
are also reflective

Tipn (¥, T2y TNy )]y =0, i=2,...,N (3.30)

and therefore binding of a second particle is disallowed.
Hence for competitive binding the hierarchy terminates
here. For binding processes of higher order, in particular
for noncompetitive binding, the inner boundary condi-
tions again depict reversible binding of a second particle
and the hierarchy continues.

E. Detailed balancing

So far there was no reason to specify the initial condi-
tion, because the equations presented were valid for any
initial condition. The notation (|) will be adopted in
cases where the initial condition is important. The re-
gions to the left and right of the vertical bar will then
be used to specify the final and initial coordinates, re-
spectively. Thus py(z1,...,2ZN,ty1,...,yn) designates
the N-particle density function given the initial values
(y1,...,yn) of the coordinates

pN($1a9xN70|y177yN)d‘/ldVN

N

i=1

Note that this can be formally used to define the initial
density when one or more particles are initially bound,
by adopting (3.10) with an opposite sign indicating that
it is the initial rather than final location which is be-
ing equated to “x¥”. Thus pn(z1,...,ZN,tY1,...,YN) IS
mathematically a Green’s function and physically a tran-
sition probability, depicting transitions from an initial to
a final value of the coordinates in a time interval ¢.

As is well known [43], transition probabilities in diffu-
sion processes obey the detailed balance condition. For
the presently considered case of free diffusion (no inter-
action potential) the detailed balance condition for any
two unbound configurations is simply

pN(mla'-'7$N7t|y17"'ny)

=PN(Z/1,---,yN,t[fl71,-~-afCN)- (332&)
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N
,IN,T
al ) = Z‘CipN(*ax27"'yzN7t)+K'apN(a’x27-'-’$Nat) —Iide(*,IE2,---,$UN,t)- (328)

f

When one of the particles (for example, particle 1) is
bound, the detailed balance condition becomes

K'apN(xla"'7$Natl*7y27"'7yN)

= KaPN (%, Y2, -, YN, BlT1, .. TN) . (3.32b)

This identity is valid for both competitive and noncom-
petitive processes, both of which allow the single-particle
binding state. Detailed balancing is useful in deriving
the backward equations and boundary conditions corre-
sponding to the hierarchy proposed above (cf. Ref. [24])
as well as for obtaining certain identities (see Sec. V B).

IV. NONCOMPETITIVE BINDING

A. General solution

A multiparticle binding site may be considered as a
nucleation center for reversible aggregation of point par-
ticles. Diffusing particles attach to or detach from it,
regardless of the aggregate size or its spatial structure.
Since the N particles are completely independent of each
other, it is natural to expect that the solution simply
factors as

pr(@s,. . ont) = [[ pi(@t), o€ la, RIUL.
(41)

Here z; may also assume the value * and pi(z;,t) is
the single-particle density, namely, the solution of (3.1)
through (3.5). For N = 2 it can readily be checked
that insertion of the factorization (4.1) into any of (3.11)
through (3.15b) and (3.17) indeed leads to one of the one-
particle equations or their sum. For example, (3.14b) be-
comes the sum of (3.1) and (3.5). This proof generalizes
to N > 2. Therefore (4.1) is an exact solution of the
hierarchy presented in Sec. III D.

For N = 2 again, integration of (4.1) over z; gives
D2(x2,t) = [L —p1(*,t)]p1(x2,t). Substituting an asterisk
for z; gives pa(*,z2,t) = p1(*,t)p1(z2,t). Adding these
two relations gives pa(x2,t) + p2(*,z2,t) = p1(z2,t), as
concluded following (3.23b). Generalizing to N particles,
one concludes that the condition

ﬁN($2--~7wN,t) + p2(*1x2""1$N7t)

sz—l(x27"‘7zN7t)) (4’2)
when applied also to particles 2,..., N, is equivalent to
(4.1).

As a result of the factorization (4.1), the binding prob-
abilities for noncompetitive binding reduce to simple ex-
pressions in p;(*,t). These expressions simplify when
all particles possess the same initial distribution and are
hence all equivalent (see above). For equivalent particles,
inserting (4.1) into (2.1) and integrating gives
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ano®t) = Sn(t) =S1)N =1 —pi(x,t)]V. (4.3)
It can be checked that this result agrees with the more
general expression for the survival probability given in
(3.24a) for N = 2. In the limit of equivalent particles
(3.24a) reads

Sz(t) =1- ZSl(t)pl(*at) —pl(*vt)z
=1—2p1(*,t) + p1(*,1)2.

The rhs indeed equals the binomial expansion of [1 —
p1(*,t)]?, see (4.3). It admits a simple interpretation
in terms of Fig. 1 (with the origin included as the two-
particle binding case): p;(*,t) is the probability that one
particle is bound, irrespective of the second particle. It is
therefore the sum of the probabilities of all starred states
on one side of the square, including the origin. p;(*,t)?
is the probability that both particles are simultaneously
bound, i.e., the probability of the state represented by
the origin in Fig. 1. Since by subtracting 2p;(*,t) the
probability p;(*,t)? has been subtracted twice, it has to
be added once as the last term in the above equation.

The probability gn,1(t) of having exactly one particle
bound can be discussed in a similar fashion. By substi-
tuting (4.1) into (2.2b) and integrating, one gets

gn1(t) = Npi(x,t) Sy (¢)N 1
= Npl(*,t) [1 - pl(*, t)]N—l . (44)

Indeed, p;(*,t) is the binding probability of a single par-
ticle, S1(t)V~1! is the probability of having the remaining
N — 1 particles unbound, and the factor N reflects the
fact that all particles are identical hence any of the N
particles may be the bound one. For N = 2, (4.4) re-
duces to

g2,1(t) = 2[p1(*,t) — p1(*,1)?].
This again admits an interpretation in terms of Fig. 1:
p1(*,t) —p1(*,t)? is the probability that exactly one par-
ticle (and no more) is bound. This is the probability of
being at the starred side of the square in Fig. 1, exclud-
ing the origin. The factor 2 takes care of the two sides of
the square.

Continuing in this fashion, the general expression for
the binding probability for equivalent particles is gotten
by inserting (4.1) into (2.3). This produces the Bernoulli
distribution

awn(® = () 0" 0= maGe,

The average number of bound particles reduces, as ex-
pected, to

(4.5)

N
(gn(t)) = D manm(t) = Npi(%,1),

m=1

(4.6)

where the second equality follows by the insertion of
(4.5) and summation of the series. For a finite system
of volume V = 74 (R? — a%)/d, the equilibrium (zero
flux) limit of (3.1) is the uniform (coordinate indepen-
dent) distribution, p1(z,00) = [1 —p1(*,00)]/V. This re-
lation already incorporates the normalization condition.
Since the flux vanishes also at the boundary, (3.4) gives
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Ko D1(a, 00) = kg p1(*,00). Taken together, one has that

p1(*,00) = Ko/(Ka + VKag). (4.7)

This result is independent of the initial condition as it
should be. The equilibrium limit for a finite system is
therefore obtained by inserting (4.7) into (4.5).

B. The thermodynamic limit

Of considerable interest is the thermodynamic limit,
involving an infinite system with all particles initially
randomly distributed. Starting from a finite system, one
lets N — oo and V — oo so that the concentration
¢ = N/V remains constant. Taking the appropriate limit
in (4.5) gives
gm(tleq) = [cp1(*,tleq)]™ exp[—cpi(x,tleq)] /m! (4.8)
for the probability of having exactly m particles bound.
The notation pi(*,tleq), representing an initial equilib-

rium (random) distribution outside the trap, is defined
from

oo
p1(*,tleq) = %z/ p1(* tly) y¢tdy
a

= lim V pi(*,t|uni). (4.9)
V—o0
Here p;(x,t|y) is the single-particle binding probabil-
ity given that the particle was initially located at y,
see Eq. (3.31). The difference between the “uniform”
and “equilibrium” solutions is that p;(|uni) is defined
over a finite domain so that p;(z,0luni) = 1/V, while
p1(leq) is defined over an infinite domain assuming that
p1(z,0leq) = 1.
In the notations of Ref. [24], pi(*,tleq) is related to
the reversible time-dependent rate coefficient kyey(t) by

eee(£) = dpy (v, tloq) /dt (4.10a)
piCetle) = [ Ko@)t

K Su(t]5), (4.10b)

/0 Theor(t) dt = Koq = ka/ka. (4.10¢)

Here kpev(t) denotes the generalization of the more
customary irreversible time-dependent rate coefficient,
krad(t), which is the radiation-boundary-condition limit
of krev(t) when k4 = 0. The second identity follows by us-
ing the detailed balance condition (3.32b) in (4.9). This
is a special case of the “generalized mass-action law” dis-
cussed below (Sec. VB). The third identity follows be-
cause for an infinite system lim; ., Si(¢|*) = 1. It also
defines the equilibrium coefficient Kq. The above iden-
tities were obtained in Ref. [24].

The equilibrium limit of the binding probability for an
infinite system may be obtained by using the identity
(4.10c) in (4.8). This gives the Poisson distribution

(4.11)

which depends on the equilibrium constant K.q but not
on the diffusion constant D. Alternately, (4.11) can be
obtained by inserting the equilibrium density for a finite
system, Eq. (4.7), into (4.9) and taking the limit V' — oo.

am(00) = (cKeq)™ exp(—cKeq) /m!,



2422 NOAM AGMON 47
C. Analysis of the binding curves Keg= 2
0.4
For irreversible aggregation, the probability of observ- !
ing an m aggregate rises and decreases due to the consec- 0.3 {/\2
utive growth of the m —1 and m aggregates, respectively.
Thus all the binding curves ¢, (t) go through a maximum 2 02r 3
which appears at later times for larger m values. This 'QE 01
is no longer true in the reversible case, where aggregates © 4
may also dissociate. In this case, some of the binding QO 0 L L L
curves increase monotonically to equilibrium. To analyze =y 0 50 100 150 200
this behavior, consider the time derivative of the binding 0.4
probability (4.8), which is given by g') 1 Keq= 3
dgm(t)/dt = Chres(t) [am—1(t) = am(D)],  (412) 2% b
with the time-dependent rate coefficient kyey(t) defined < o2/ 3
in (4.10a). Since kyev(t) > 0 at any finite ¢, the necessary 01 4
condition for a maximum in gmn(t) at ¢ = tmax is that '
gm—1(tmax) = @m(tmax), OF 0 . L .
0 50 100 150 200

cp1(*,tmaxleq) = m. (4.13)

The identity (4.10b) shows that p;(*,t|eq) grows mono-
tonically with time to a maximal value K4 obtained at
t = co. One therefore concludes that if

m< cKegqg <m+1, (4.14)

the first m binding states, q1(t),. .., gm(t), show a maxi-
mum as a function of time, whereas the remaining bind-
ing states increase monotonically to equilibrium. In par-
ticular, in the irreversible case kg = 0 and Keq = 00 so
that all g, () exhibit a maximum.

D. Explicit results for one-dimensional aggregation

Closed-form results for aggregation in one dimension
follow from the analytic solutions for p; in this case [37,
40]. The following solutions for Egs. (3.1)—(3.5) are valid
for diffusion on half the line, 0 < z < o0, 74 = 1 and
a = 0. Diffusion on both sides of the binding site is
equivalent to multiplying ¢ and k4 by 2. For a particle
which is initially bound [37]

J

Ky

pi(e,tly) = < exp(~y*/4Dt) [d> (QL\/E +/\—\/t/_D> — ¢ (——%)— +/\‘+\/t/_D>] :

time }

FIG. 2. Transient aggregation-state probabilities in one
dimension. The parameters utilized in Egs. (4.8) and (4.18)
are D =1, kr =1, kg = 0.2, and ¢ = 0.4 and 0.6 for the top
and bottom panels, respectively.

pi(x,t¥) = A4@(A-vt/D) — A-d(A+Vt/D)] /A,

(4.15)
where Ay = (kr £ A)/2, A= (k2 —4Dkg)Y?, Ky = kg
for d =1, and

#(2) = exp(2?)erfc(z). (4.16)

erfc is the complementary error function. The notation
(|*) stands for an initial bound state. Insertion of (4.15)
into (4.5) gives the binding probability for N particles
initially bound at the origin of a semi-infinite line.

When a particle is initially unbound and placed at a
distance y from the binding site, the following expression
holds [40]:

N (4.17)

where 0 < y < 0o and ¢ is defined by (4.16). The integral of (4.17) can be obtained in closed form. Insertion into

(4.9) gives

pistlen) = [ it i) dy = B | 606 VATD) = 560 VD) + Koo,

In agreement with (4.10b) and (4.10c), p1(*,tleq) — Keq
as t — 0o. The equilibrium coefficient K.q is defined in
(4.10c). Equation (4.18) can also be obtained directly
from (4.15) by noting that AL A_ = Dky and applying
identity (4.10b).

In the thermodynamic limit, Eqgs. (4.8) and (4.18) give
an exact analytical solution for the aggregate size dis-
tribution for reversible aggregation of point particles in
one dimension. This solution is demonstrated in Fig. 2
for m = 1-4 and two values of cKeq. In agreement with

(4.18)

[

the condition (4.14), when cKeq = 2 only q;(t) exhibits
a maximum while for cK.q = 3 both ¢i(¢) and g2(t) go
through a maximum. In the latter case the maximum in
g2(t) occurs exactly when g1 = g2, see (4.12).

E. Connection with the Smoluchowski theories

Smoluchowski [1] has discussed two related theories,
that of density fluctuations and that of coagulation. Both
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theories were applied to colloid suspensions and were re-
viewed by Chandrasekhar [2]. It is interesting that in the
limit of noncompetitive binding, both lead to (4.8).

The first theory describes equilibrium density fluctua-
tions within some observation region. It is interesting to
derive the thermodynamic limit (4.8) using the Smolu-
chowski arguments (compare Sec. III.1 in Ref. [2]). De-
note by Si(t|*) the probability that a single, initially
bound particle will have dissociated by time t. Sup-
pose that initially n-independent particles were bound.
The probability that during the time interval ¢, m par-
ticles will exit (“ausgang”) the trap AW is given by the
Bernoulli distribution

AD(t) = (;‘l) Si(E})™ [1 = S1(¢)]*™™.  (4.19)

The probability that m particles will have entered the
binding site during ¢, denoted above by ¢, (t|eq), must
be equal under equilibrium conditions to the average
number of dissociating particles. Since cK,q is the av-
erage number of particles bound under equilibrium con-
ditions, the probability for having n particles simulta-
neously bound is given by the Poisson distribution g,
Eq. (4.11). Taking the average of Ag,? ) with respect to
this distribution gives

gm(tleq) = D AL (t) gn(c0)

= [cKeqS1(t]%)]™ exp|—cKeqS1(t]x)] /m! .
(4.20)

Applying the identity (4.10b) shows that (4.20) is identi-
cal to (4.8). Although the derivation assumed an equilib-
rium distribution of particles within the site, the fact that
the particles are independent makes g,,(t|eq) the prob-
ability of binding m (randomly distributed) particles in
time t, irrespective of the initial number of particles in the
site. This demonstrates that the probabilistic arguments
of Smoluchowski are equivalent to the thermodynamic
limit of the hierarchy of diffusion equations suggested in
Sec. III.

A second Smoluchowski theory treats aggregation ki-
netics by rate equations. For the problem under consid-
eration an exact solution exists, see Eq. (4.12). Thus one
may check the validity of the rate-equation approach. In
the case of irreversible aggregation (4.12) reduces to

de(t)/dt = Ckrad(t) [Qm—l(t) - Qm(t)] ’ (4'21)

where k;,q(t) is the (time-dependent) rate coefficient for
irreversible recombination, i.e., the radiation-boundary-
condition limit of krev(t), obtained when x4 = 0. The
result (4.21) is a classical rate equation for irreversible
aggregation, since the first term describes the addition
of a monomer (concentration c) to a cluster of m — 1
particles and the second term depicts growth of the m-
particle cluster. Therefore the observation [10, 11] that
the Smoluchowski theory is exact for go(t) extends to
arbitrary values of m.

For reversible aggregation a simple rate-equation ap-
proach suggests that [4(b)]
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dam(t) _
dt ck

rad (t) [Qm—l(t) - Qm(t)]

+ka[(Mm+ 1)gm+1(8) — mam(t)].  (4.22)
The second term on the rhs of (4.22) represents, in the
rate-equation approach, dissociation of a monomer from
clusters in which all monomers have equal dissociation
probabilities. In the limit of ¢ — oo one has that
kraa(t)™! — k7! + (4wDa)~!. For a slow, “reaction-
controlled” reaction ky,q4(00) =~ k, and the equilibrium
solution of Eq. (4.22) coincides with (4.11). Thus a
rate equation approach is useful for intrinsically slow
reactions. Otherwise, a better approximation for the
reversible case may possibly be achieved by extending
(4.12) rather than (4.22). In other words, starting from
kinetic equations for irreversible aggregation, one re-
places everywhere krad(t) by krev(t).

V. COMPETITIVE BINDING

Competitive binding is the more difficult case because
the particles are no longer independent and therefore no
analytical solution exists. The discussion of noncompeti-
tive binding served to establish the hierarchy of diffusion
equations. It is expected that this hierarchy, when trun-
cated at the level of (3.30), provides the precise formu-
lation of competitive binding. In the competitive case,
it is precisely (3.30) which excludes the simple factoriza-
tion (4.1) as a valid solution indicating that the particles
are no longer independent. The formalism is used below
as an alternate route to known identities and approxima-
tions and in extending the utility of the density expansion
[12] to reversible reactions.

A. The equilibrium density

When R is finite, so that the N-particle system is con-
tained in a finite volume V, an equilibrium solution is
approached as t — oo. The exact equilibrium solution of
(3.25)—(3.30) is

V¥pn(Z1,...,ZN,00) = 1/(1 + cKeq),
(5.1)
VVpN(*,Z2, ..., TN, 00) = Keq/(1 + cKeq)
irrespective of the initial condition and the identity of the
bound particle. As always, ¢ = N/V and Keq = Ka/Kd-
Upon insertion into (2.1) and (2.2b) one gets

gn,0(00) = 1/(1 + cKeq),
gn,1(00) = cKeq/(1 + cKeq),

(5.2)

for the probability of having zero or one particles bound
at equilibrium, respectively. This equilibrium solution
was suggested in Ref. [24] based on chemical intuition
and the convolution approximation.

It was noted [24] that solution (5.2) conforms to the
usual thermodynamic definition of the equilibrium coef-
ficient
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Keq = qn,1(00)/[cgn,0(c0)], (5.3)

namely, the concentration of products (bound particles)
divided by the product of the concentration of reactants
(free particles and unoccupied site). This is sometimes
known as the “law of mass action.” The validity of this
relation is not limited to competitive binding. By using
the equilibrium solution (4.11) for noncompetitive bind-
ing one can verify that the relation (5.3) holds in this case
as well. Insertion of the equilibrium solution (4.7) into
the Bernoulli distribution (4.5) shows that (5.3) holds
also for aggregation in finite systems.

The proof that (5.1) is indeed the equilibrium solution
follows from three observations: First, this solution is
constant so that

apN(-Tl,u-,-’L'N,OO) — apN(*,332,~~:37N7°°) =0
ot ot ’
u7ipN(371,~~737Na00) =$PN(*a$2,~-';mN1w) =0a
Lipn(T1y.-,ZTN,00) = Lipn(*,T2,...,TN,00) =0,
(5.4a)
and similarly for x; = *%,% = 2,..., N. Second, the flux
at the contact distance, £; = a, vanishes
/‘CapN(a,xg,...,wN,OO) = K’de(*yx2a"-amNaoo)9
(5.4b)

and similarly for z; = a, ¢ = 2,...,N. Finally, (5.2)
implies that the total probability is normalized,

gn,0(00) + gn,1(c0) = 1. (5.4c)

Since this proof is valid for any N and V/, it holds also in
the thermodynamic limit.
Rigorous equilibrium solutions thus exist for both com-

1 R R R R
gno(t]*) = m// dVl"‘dVN/"'/ dUsz---dUN pN(T1,- -+, TN, t1% Y2, YN) -
a a a a
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petitive and noncompetitive binding. A comparison of
solutions (4.11) and (5.2) shows that they coincide in
the infinite dilution limit, ¢ — 0. In this limit the dif-
ference between competitive and noncompetitive binding
vanishes. For finite concentrations, the equilibrium solu-
tions for the two cases differ.

B. The generalized-mass-action law

It was shown above that the equilibrium solution for
both competitive and noncompetitive binding obeys the
mass-action law (5.3). In the time domain, a generalized-
mass-action law holds

Keq = qN,l(tluni)/[ch,O(tl*)]

= q1(tleq)/[eqo(t]%)] s (5.5)
where gn,1(t|uni) denotes the probability of having ex-
actly one particle bound, given that initially all N par-
ticles were uniformly distributed in V' and gn,o(t|*) de-
notes the probability of having no particle bound by time
t, given that initially one was bound and the remain-
ing N — 1 particles were uniformly distributed. g¢;(t|eq)
and qo(t|*) are the V — oo limits of these probabilities.
When ¢t — oo Eq. (5.5) reduces to (5.3), while for N =1
it reduces to (4.10b). The identity (5.5) was suggested
from a convolution approach to competitive binding [24],
proven using an occupation number formalism [31] and
demonstrated in numerical random-walk simulations [30].
It will now be shown to be a direct consequence of the
detailed balancing condition (3.32b).

Using the Green’s function defined in (3.31) one may
rewrite (2.1) as

(5.6)

Here dU; = 4 yf‘ldyi and [],(dU;/V) is the initial uniform probability. Similarly, from (2.2b) one has

N (R (R R R
gn,1(t|uni) = TN / / dV2"’dVN/"‘/ dUs -+ -dUN pN(*, T2, -+, TN, EYL, -+ YN) -
a a a a

(5.7)

Use of (3.32b) now completes the proof. Since the detailed balance condition (3.32b) holds for all binding processes, the
generalized-mass-action law (5.5) is indeed very general. It is valid for both competitive and noncompetitive binding
in finite or infinite systems. It is most useful for competitive binding, where no analytical solution is available, since
it shows that the solution for only one of the two initial conditions needs to be calculated (or measured).

C. The effective-rate equation

It is possible to reduce the solution of the hierarchial diffusion equations, Sec. IIID, to a single effective-rate
equation. This equation, which can be deduced from the convolution relations of Ref. [24], has been shown to be
rigorous by Szabo and Zwanzig [31] using their occupation number formalism. It involves the survival probability for
one particle (say, particle 1) which is initially at the contact distance a, while the other N — 1 particles are uniformly
distributed. In analogy to (5.6), this quantity is defined by

1 R R R R
avo(tla) =Sw(tla) = gr=r [+ [ aVieedviy [ [T dUn e dUx (st u) . 59
a a a a
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The definition and subsequent derivation can be easily extended to other initial conditions of particles 2,..., N,
provided that they are the same for all particles (i.e., the particles are equivalent).

To derive the desired identity, differentiate (5.7) with respect to ¢ and insert the N — 1 particle diffusion equa-
tion (3.28). This gives

N R R R R
dQNyl(tfuni)/dtz‘—/—ﬁ'/---/ de---dVN/u-/ dU, ---dUn

N
X [(Zﬁz _K'd> pN(*ym27"'7mNat|y13-"7yN)+K/apN(a7x27'"71"N7t’y17""7yN) . (5‘9)

=2

The integral of the diffusive terms on the rhs equals the difference of the fluxes at R and a, which vanish because
the outer boundary is always reflective while the inner boundary is reflective whenever a particle is already bound,
see (3.30). Here explicit use of competitiveness is made. For the last term on the rhs one uses the detailed balance

condition (3.32a) and definition (5.8) to write

1

Inserting into (5.9), one finally obtains the effective-rate
equation

dQN,l (tluni) _
dt

This is supplemented by the initial condition
gn,1(0luni) = 0. Since (5.11) is valid for any N and V, it
is valid also in the thermodynamic limit where, dropping
the subscript IV, one has

dqi (tleq)
dt

Unlike the generalized-mass-action law, the validity of
(5.12) does not extend beyond the competitive case; for
example, contrast it with (4.12). This is due to the use
made of (3.30).

Equation (5.12) is exact but formal, since it depends on
the unknown survival probability S(t|a). One may turn
it into a starting point for approximations by writing

ckq Sn(tla) — kqgn,1(tluni). (5.11)

= ckaS(tla) — Kq q1(tleq) . (5.12)

S(tla) = f(t) S(tleq) = f(t)[1 — qi(tleq)]. (5.13)
Different functions f(t) give rise to different approximate
solutions. Several of the approximations discussed by
Szabo [32] indeed have this form.

It is interesting to note that (5.12) may be written as
a convolution relation

a1 (tleq) = cra /0 expl—ra(t — )| SE|a)dt .  (5.14)

Alternately, one may use identity (5.5) to convert (5.12)
into
dS(t|*) _

) — ka[S(tla) - ()]

(5.15a)

R R R R
W// dVQ‘--dVN/---/ QU -+ dUN D (a, 32, on, s, yn) = S(ta)/V.
a a a a

(5.10)

and (5.14) into its convoluted form
t
S(tlx) = nd/ exp[—kaq(t —t')] S(t'la) dt’ . (5.15b)
0

The probability that an initially bound particle will ap-
pear at contact between t and t + dt is kqexp(—kaqt).
From contact, it evolves according to S(t|a), therefore
the convolution relation. The identity (5.15b) is identi-
cal with Eq. (4.29) in Ref. [24], which is therefore exact.
It is useful in connecting solutions for the two different
initial conditions.

D. The convolution approach

Starting from the formal but rigorous results of Sec.
V C, the convolution approach of Agmon and Szabo [24]
may be justified as follows: In the convolution relation
(5.15b), 1 —Siyr (t]*) = exp(—kat) is the binding probabil-
ity for the irreversible dissociation of an initially bound
particle. For clarity, let us attach the subscript rev to the
solution which is subject to the more general reversible
boundary conditions. Then (5.15b) may be rewritten as

t
See(t%) = Ka /0 [1 = Shee(t — ¢/|%)] Seev(t'|a) dt’ .
(5.16)

It is impossible to solve this rigorous relation explic-
itly because two different initial conditions are involved,
namely that of a particle bound and at contact. How-
ever, (5.16) relates not only two initial conditions, but
also two different boundary conditions (the reversible and
irreversible ones). A reasonable approximation may in-
volve switching the two indices on the rhs of (5.16) to
obtain
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t
Seov (%) ~ Ka / [1 = Streu (t — #/[%)] Sire (] a) d#' .
0

(5.17)

In contrast to (5.16), in (5.17) both reversible terms refer
to the same initial condition, that of a bound particle. A
solution for reversible binding may now be obtained pro-
vided that a solution for the simpler, irreversible problem
is known. In our previous notations Siyr(t|a) = Srad(t|a)
and (5.17) is identical with Eq. (4.14) in Ref. [24].

E. The density expansion

An expansion similar to that introduced by Haan and
Zwanzig [44] has been proposed [12] for approximating
the survival probability for irreversible binding

an1(t) = Naua(t) + 3N(N —1)[g2,1(t) — 241,1(2)]
+%N(N —1)(N—2)

x[g3,1(t) — 3g2,1(t) +3q1,1(¢)] + --- . (5.18)
This expansion is an exact identity for any finite value of
N provided that all V terms are included. For large NV,
it is desirable to truncate the series at some value n <
N. While such an approximation may be useful for any
initial condition, the following discussion is limited to the
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case of equivalent particles which are initially uniformly
distributed.

The utility of the approximation depends on the con-
vergence properties of the series. For noncompetitive
binding, where an analytical solution is available, it is
seen that (4.4) is equivalent to

N

aa) = =3 (N ) nl-meol.

n=1

(5.19)

This has the identical form to (5.18) with the expan-
sion coefficients being equal to —n[—p;(*,t)]®. The
fact that the series has alternating signs enhances its
convergence properties. Convergence is expected to be
fast under the condition that the single-particle density
obeys pi(*,t) <« 1. For an initial uniform distribution,
p1(*,0luni) = 0. Hence the condition holds for short
times. Since for Keq/V < 1, p1(*,00luni) ~ Keq/V the
condition holds also for small K.q/V. In the general case
one concludes that cKeq should be small. Therefore the
expansion should be useful for short times, infinite dilu-
tion, or slow binding.

If the leading term in (5.18) is already exact, gn,1(t) =
Nq1,1(t) and each of the higher coefficients cancels iden-
tically. This occurs for an approximation in which
L [ pn (e, an ) dVa AV & pi(x,t), see
(2.2b). In order that the leading term in the expan-
sion will correspond to the more physical limiting case
of noncompetitive binding, one exponentiates (5.18) to
obtain

InSn(t) ® —Ng1,1(t) + %N(N —1)[S2(t) — S1(£)?] + 31!'N(N —1)(N — 2)[S3(t) — 352(2)S1(t) +25:1(1)%] + --- .

This result is again valid for N equivalent particles. By
performing a Taylor expansion and resuming the terms
one verifies that this result is indeed equivalent to (5.18).
Indeed, for noncompetitive binding Sy = SV, see (4.3),
so that all terms except the first vanish identically.

Figure 3 shows the utility of the expansion (5.20) for
estimating the binding probability of 20 particles diffus-
ing on a finite line segment. The binding probability,
@20,1(t|uni), is shown for three different values of k4. The
-full curves are the results of a lattice random-walk simu-
lation [30]. The dotted, dashed, and dash-dotted curves
are calculated from the expansion truncated at n =1,
2, and 3, respectively. These involve the exact binding
probabilities, g 1(*,¢|luni) =1 — S, (¢|uni), for n =1, 2,
and 3 particles as calculated from the numerical propa-
gation of Egs. (3.25) through (3.30), using the algorithm
described in the next section. It is seen that convergence
to the exact 20-particle solution is very good for small ¢
and/or small cKe¢q. Only for the longest times and the
smallest x4 is the third-order term required.

(5.20)
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FIG. 3. The binding probability for competitive binding
on the line. Simulations of 20 particles on an L = 100 long
lattice (with a reversible binding site at the origin and periodic
boundary conditions [30]) are compared with the first three
terms in the density expansion. Note the logarithmic time
scale. The parameters involved are D = 1, k, = 1, and
¢ = 0.2. The average of 100000 stochastic trajectories was
required to produce the level of statistical noise shown by the
simulated curves.
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VI. THE DIRECT-PROPAGATION METHOD

In a numerical propagation of the partial-differential
equations, the spatial coordinates are discretized so that
the diffusive hierarchy is converted into a Master equa-
tion of transition probabilities obeying detailed balanc-
ing. These equations are detailed below for the case
N = 2, see Sec. IIIB and d = 1. The discrete coordi-
nate system is shown in Fig. 1 (for L = 5). The index
1 describes the location of the first particle and assumes
the values 0,1,...,L. i = 0,1, and L represent the bound
state x, the particle at the contact distance, ; = a, and
at the outer boundary, z; = R, respectively. The second
particle is described by the index j assuming analogous
values. The grid spacing is Az in both coordinates and

one denotes D = D/Az? and K, = k,./Ax. pi,;(t) is

|

2427

the appropriately discretized density p2(xi,z2,t). It is
normalized such that

L
Z pi’j(t) =1.

4,J=0

(6.1)

An initial uniform distribution for the unbound state
reads
pij(Oluni) = 1/L?, 1<4,j<L (6.2)

and zero otherwise. In the following, reflecting boundary
conditions are imposed at L. The equations may be easily
modified to account for other boundary conditions at L,
for example, periodic [30].

The Master equations assume the following form: For
the free state one has

dp; i (t) D(pi-1,j +Pit1,; +Pij-1 +Pijr1 —4pij), 2<i,j<L-1 _
oo = D(pi-1,; +Piv1y +Pig-1 —3pig), j=L, 2<i<L-1 (6.3a)
D (pi-1,; +Pij—1 — 2pij), i,j=1L.
At the contact distance (j = 1) one has
dpi.; (£) D (pi—1,; + Pit1,; + Pij+1) + Kapij—1 — (3D + £r) pij j=1,2<i<L-1
__djt =19 D(pi+1; +pij+1) + Ka(Pij-1 +Pi—15) —2(D+ ) pij, i,j=1 (6.3b)
D (pi,j+1 +Pi-1,5) + Kapij—1 — (2D + K7) pij j=1, i=L.
Finally, for the bound state (j = 0) one has
dp; ; (1) D(pi-1; +Pis15) +Krpijr1 — (2D +ka)pij, j=0,2<i<L-1
—_——djt =4 Dpit1; + Erpijrr — (D +K4) pij j=0,1i=1 (6.3¢c)
Dpi-1,; + Erpij+1 — (D +Kd) pij j=0,i=L.
[
Similar equations hold when the indices ¢ and j are in- L L
terchanged. | a(t) = ) piot) + > po;(t). (6.6)
The above equations can be summarized in a tensor ; N ; 7

form

P Mp(), (6.4)
where p is the matrix of probabilities p; ;(t) and M is
the tensor of transition probabilities in the above scheme.
The formal solution is

p(t) = exp(tM) p(0). (6.5)
In ordinary finite differencing in time, the exponent is
expanded in a Taylor series around ¢ = 0. The draw-
back of this approach is the pointwise convergence at
t = 0, which limits the size of the time step. In the
Chebyshev propagation [45], routinely used in the gemi-
nate limit [36], the exponent is expanded in a Chebyshev
series which converges uniformly over a whole interval.
Scaling the eigenvalues of M to the size of this interval
allows an arbitrarily large time step to be taken. The
binding probability is finally obtained from the density
p(t) by

This algorithm has been coded for 1, 2, and 3 parti-
cles. Results of sample propagations (full curves) are
compared in Fig. 4 with lattice random-walk simulations
(squares), generated using the algorithm of Ref. [30]. The
larger N, the more special cases need be considered at
the boundary of the N-dimensional cube so that the Mas-
ter equation (6.3a) complicates considerably. This is one
limitation in increasing N. A second limitation involves
computer memory requirements, since at each time step
some three copies of p are retained in memory, each re-
quiring the storage of (L + 1)V real numbers.

VII. CONCLUSION

In this paper a class of ideal reversible binding prob-
lems has been considered, in which a static, spherical
binding site in a d-dimensional space is surrounded by dif-
fusing point particles which may both attach and detach
from the binding site. The case of unrestricted binding is
noncompetitive, involves independent particles, and cor-
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FIG. 4. Comparison of the binding probability, Ps =
gn,1(t|uni), from the direct propagation method (curves) with
random-walk simulations (squares) of competitive binding on
the line for three different values of N. Parameters involved
are D =1, kr = 1, kg = 1, and L = 100. Periodic (rather
than reflective) boundary conditions were imposed at the end
of the interval. The number of simulations averaged varies
from 100000 for N =1 to 60000 for N = 3.

responds to an idealized picture of reversible aggrega-
tion. In contrast, when only one particle may bind at
a time, one obtains the limit of competitive binding as
an idealized case of a pseudo-first-order reaction. This
work established a unified binding formalism through a
hierarchy of diffusion equations. When truncated, these
describe competitive binding and otherwise correspond
to noncompetitive binding. The hierarchy serves as a
convenient starting point for deriving identities and con-
structing approximations.

For noncompetitive binding, the binding probabilities
may be obtained explicitly in terms of the single-particle
solution. Since the aggregating particles are point parti-
cles, the aggregate has no spatial structure and may grow
or diminish in size only by the addition or subtraction of
a monomer. While this may be too restrictive for some
realistic aggregation problems, the analytical expressions
obtained for the binding states may serve as a useful ref-
erence point much like the properties of ideal gases are
used in analyzing real gases. Additionally, the analytical
solution suggests that a natural extension of irreversible
aggregation kinetics to the reversible case is by replac-
ing the time-dependent rate coefficient by its reversible
counterpart rather than by adding dissociation terms to
the equation. It would be interesting to apply this ob-
servation as a starting point for approximating realistic
reversible aggregation problems.

For competitive binding the restriction imposed at
the entry to the binding site introduces correlations be-
tween particle motions, so that no analytical solution
is available even when the particles are otherwise non-
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interacting. In this case it was demonstrated how the
exact hierarchy may be used to derive identities in a
most straightforward way. These include an effective-rate
equation, itself a basis for various approximations, and
the generalized mass-action law whose generality indeed
extends to binding processes of all orders. While these
identities are known [24], their derivation is new. The
simplicity of the derivations helps establish the diffusive
hierarchy as the preferred description of these problems.
Additionally, a density expansion has been applied to re-
versible binding for the first time. It uses the ability to
solve (numerically) the exact many-body equations for a
small number of particles. | This provides a useful descrip-
tion of the binding probability for short times.

The asymptotic long-time behavior involves the con-
voluted motions of all particles and is hence inaccessible
by means of a simple density expansion. It is exactly
in this limit that many-body effects on these reactions
become dominant, which motivates a careful study of
the long-time behavior. So far, the asymptotic behavior
has been obtained from mean-field approximations [32]
and random-walk simulations [30]. The binding proba-
bility for competitive binding is predicted to approach its
equilibrium limit through power-law decay, with a uni-
versal (concentration independent) power of —d/2. It
is interesting that such power-law behavior has been re-
cently observed experimentally in a reversible reaction
of excited-state proton transfer to solvent [41]. The in-
triguing experimental observation is that the asymptotic
power seems to increase with increasing concentration.
The origin of this discrepancy has not yet been clarified.

It is hoped that the presently established hierarchy can
be utilized for deriving the asymptotic behavior without
the need to recourse to mean-field approximations. This
involves taking both limits of infinite time and an infinite
system (the “thermodynamic limit”). The result will al-
low us to verify the adequacy of the predicted mean-field
behavior. However, the discrepancy between the experi-
mental result [41] and the mean-field prediction could fol-
low from several other factors, such as the neglect of an-
ion diffusion or proton-proton Coulomb repulsions. The
rigorous introduction of such interactions is extremely de-
manding. Nevertheless, joint advances in analytical the-
ory and computer simulations and experiment promise
to provide interesting insights on the many-body aspects
of chemical and biochemical reactivity.
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